JR East, Hitachi and Toyota to Develop Hybrid (Fuel Cell) Railway Vehicles Powered by Hydrogen
East Japan Railway Company (“JR East”), Hitachi, and Toyota Motors have entered into an agreement to collaborate on the development of test railway vehicles equipped with hybrid systems that use hydrogen-powered fuel cells and storage batteries as their source of electricity. By collaborating to develop these test railway vehicles, we aim to further improve the environmental superiority of railways and realize a sustainable society.
Contributing to a Carbon-Free Society with Next-Generation Railway Vehicles.
As efforts are made throughout the world to create sustainable societies. The same is also true for the railway sector, a means of mass transport, where there is high anticipation for next-generation rolling stock that operates using clean energy. Such as hydrogen. Hydrogen ensures minimal environmental impact as it does not emit any carbon dioxide when used as an energy source and it can be produced from various raw materials using renewable energy.
The development of innovative rolling stock powered by hydrogen will therefore contribute to the development of a low-carbon society as it helps to curb global warming and diversify energy sources.
Collaboration to Develop Hybrid (Fuel Cell) Test Vehicles
Combining railway and automotive technologies, namely JR East’s railway vehicle design and manufacturing technologies. Hitachi Motor’s railway hybrid drive system technologies developed with JR East and Toyota Motor’s technologies acquired through the development of the Toyota Mirai fuel cell electric vehicle and the SORA fuel cell bus, the 3 companies will adapt the fuel cells used in automobiles for railway applications.
Together, they will create hybrid (fuel cell) test vehicles with the aim of achieving the high-power output control necessary to drive railway vehicles, which are much larger than automobiles.
Overview of the Hybrid (Fuel Cell) Test Vehicles
- Train Configuration
- Vehicle model: FV-E991 series
- Train configuration: Two cars in one unit
- Workings of the Fuel Cell Hybrid System
The hydrogen used to fill the hydrogen tank is supplied to the fuel cell device and undergoes a chemical reaction with oxygen in the air to generate electricity. The main circuit storage battery is charged by electric power from the fuel cell device and by capturing and converting energy to electric power using regenerative braking. The hybrid drive system supplies electric power to the traction motors from both the fuel cell device and the main circuit storage battery, controlling the movement of the wheels. So, Toyota Motors will develop the fuel cell device and Hitachi will develop the hybrid drive system.
- Main Specs of the Test Vehicle
Item | Model FV-E991 Specs |
---|---|
Train configuration | 2 cars (1M1T) |
Maximum speed | 100 km/h |
Acceleration | 2.3 km/h/s |
Range | Approx. 140 km (max.) |
Main circuit devices | Inverters (VVVF inverter)1C2M × 2 units, Traction motors95 kW × 4 |
Fuel cell device |
|
Main circuit storage battery |
|
Hydrogen tank unit |
|
Design
Incorporating a blue splash pattern to represent the moistening of the earth and symbolize water generated from the chemical reaction in the fuel cells as a motif. The railway vehicle design conveys both a sense of speed and a futuristic image.
Logo
The lark is known as a harbinger of spring. The HYBARI logo of the test vehicles was designed to represent the introduction of new energy for vehicles like a breath of spring onto the land.
- Overview of demonstration testing
- Start of testing: March 2022 (scheduled)
- Test section: JR East Tsurumi Line, Nambu Line, etc.
If you are looking to buy Used Cars, Bus, Trucks, Machinery, Parts from Japan. We provide high-quality used vehicles directly from Japan.
Please visit our website: www.japanesecartrade.com
Check more useful blog pages: blog.japanesecartrade.com/blog